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Abstract
Several experiments in the last decade have demonstrated the enormous
potential of time-reversed acoustic (TRA) and elastic (TRE) waves for
applications in many fields, such as medicine, materials characterization and
oceanography. In the present contribution, we demonstrate the applicability
of the local interaction simulation approach (LISA) to simulate, by means of
virtual experiments, both TRA and TRE and to reproduce the relevant
features of both techniques.

1. Introduction

The basic solutions to the one-dimensional linear wave
propagation equation for electromagnetic, acoustic or
ultrasonic waves are well known: f (x − vt) and g(x + vt).
These solutions are usually interpreted as describing pulses
travelling forwards and backwards, respectively, with respect
to the positive direction of the x-axis. An equally legitimate
interpretation is that of pulses travelling forwards and
backwards in time (time invariance). In the acoustic case, this
alternative interpretation implies that, for every burst of sound
uS(r, t) propagating away from a source in any reflecting,
refracting or scattering medium, there exists a set of pulses
uR(r, −t), which precisely retrace all the paths generated by
the propagation of uS arriving simultaneously at the sound
source.

Time invariance (and its violation in weak nuclear
interactions) is a concept of fundamental relevance in
elementary particle physics. In principle, it could be exploited
in micro- and macromechanics experiments, but the extreme
sensitivity to initial conditions makes it unworkable in most
situations. Waves, however, are much less sensitive to initial
conditions than particles. In fact, in a multiple scattering
environment, the critical length that causes a significant
deviation at a future time t decreases exponentially with time
in the case of particles, but only as the square root of time for
waves [1].

Time-reversal invariance has been used for many years
by seismologists in the petroleum exploration community.
However, while their method, called time-reversed migration
[2–4], requires the time-reversal process to be performed

by computers, with time-reversed acoustic (TRA) or time-
reversed elastic (TRE) the time-reversal is accomplished in
the propagation media itself.

The basic premise of both time-reversed migration and
TRA is that, if the wavefield can be known as a function of time
on some boundary surrounding a given region, then it can also
be found at every point inside that region at previous times by
using the wave equation with time running backwards. In other
words, the result of a time-reversal process is that the waves
recorded on the boundary are focused back on the acoustic
sources or scattering targets (acting as sources) inside.

Furthermore, if recorded wavefields from an array of
receivers are electronically time-reversed and transmitted
back into the medium, the wavefield is focused back onto
the scatterers and sent back to the receivers. The new
wavefield observed at the array, however, will now be
proportionally dominated by the scattering from the strongest
scatterers. This effect may be further enhanced by successive
iterations or by applying the so-called Décomposition de
l’Operateur de Retournment Temporel (DORT) method [5, 6].
A remarkable feature of DORT is that the focusing may also
be selectively implemented on weaker scatterers. In fact,
it is possible to build an N × N matrix (N is the number
of transmittters/receivers), whose element (i, j) is given by
the signal received by the receiver j from the signal from
transducer i. After time-reversal, each eigenvector of the
matrix gives a signal which focuses on a different scatterer [6].

Another important advantage of TRA is that it works well
in heterogenous media (actually better than in homogeneous
ones). Due to the backpropagation discussed above no
knowledge of medium properties is required (i.e. deviations of
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the ultrasonic rays from their path due to inhomogeneities in
the specimen are automatically retraced back with the correct
angles, so that no correction is needed).

Finally, the application of time-reversal to acoustics and to
ultrasonics seems to represent one of those extremely rare cases
in which some kind of ‘reversed Murphy’s law’ seems to apply,
i.e. ‘Whatever can go right, it will’ in fact, as noted above,
not only are waves very robust but the acoustic (or elastic)
wave propagation velocity seems to be just ‘right’ as well. For
example, the propagation velocity is sufficiently low so that in
medical applications there is no interference from the patient’s
breathing or heartbeat (i.e. the wave frequency is sufficiently
high to avoid interference from an external noise on a human
timescale). However, the propagation velocity is also not so
small that pulses cannot be adequately recorded and digitally
inverted (which would require electronic devices working
at very high frequencies). Moreover, multiple scattering
in transmission experiments [7, 8] or multiple reflections in
waveguides [9], instead of being a hindrance, actually improve
the focusing, to below the diffraction limit of about half of a
wavelength. For these reasons TRA and TRE have generated
considerable excitement, both as areas of basic research and
for their potential for providing detailed information about the
acoustic or elastic properties of the specimen or propagation
medium of interest.

Several excellent review articles have been written on
the topic of TRA and time-reversal mirrors; (1) applications
of TRA to experiments in shallow water or in the ocean
[10–13], (2) TRA applications for the human body [14–16]
and (3) applications to damaged materials for NDE purposes
[17, 18]. However, to our knowledge, these techniques
have not yet been applied to the Earth, nor have numerical
simulations of TRE been performed. The following paper is
devoted to both subjects and results of several virtual TRA and
TRE experiments are presented to demonstrate their feasibility
and usefulness.

2. Numerical simulations of TRE

Virtual experiments are extremely useful, not to replace actual
experiments, but to confirm the soundness of the underlying
ideas and to optimize the choice of parameters. In the
case of TRE waves there is an additional motivation, i.e.
the possibility of studying the issue of which of the three
components (compressional P, and shear SH and SV) to
broadcast in the beginning and to retain to retransmit in
successive time-reversal iterations. In fact, in addition to time-
reversal invariance, which is satisfied in adiabatic processes,
TRA and TRE require spatial reciprocity. The latter is satisfied
if interchanging the position of source and receiver does not
alter the resulting field. This is clearly not always the case.
For example, if a fluid phase is included in the propagation
medium, a P-wave from a solid enters a fluid as a P-wave only,
while in the reverse process an S-wave may be generated by
mode conversion at the interface.

As mentioned in the introduction, applications of TRE to
Earth studies could be useful, e.g.

(i) to characterize the distribution of scatterers within the
Earth or portions of it. For this purpose we recall that
DORT allows one to focus selectively on relatively weaker
scatterers;

(ii) to better understand the geometry of magmatic intrusions
and eruptions in a volcanic region, and also to characterize
fault zones;

(iii) to learn more about the heterogeneity of petroleum
reservoirs from seismic data.

2.1. The local interaction simulation approach

In order to solve the elastodynamic equation to simulate the
propagation of ultrasonic pulses in heterogeneous materials, as
a first step for TRE, we adopt the ‘local interaction simulation
approach’ (LISA) [19, 20]. The use of LISA is particularly
convenient in conjunction with parallel processing. In fact,
by placing the processors into a one-to-one correspondence
with the ‘cells’ of the discretized specimen, one can assume
that each cell may have different physical properties, since
the corresponding processors are mutually independent. Of
course, parallel computers do not have enough processors
(yet) to establish a real one-to-one correspondence. However,
by using ‘virtual processors’ and/or by assigning different
portions of the specimen to different ‘real’ processors, optimal
efficiency in the parallelization may be easily obtained. In fact,
the updating is synchronous and the iteration law is uniform,
i.e. all the sites update their state at the same time and according
to the same law. As a consequence, any heterogeneous system
can be treated with the same ease and computer time as a
homogeneous one.

An important feature of LISA is, as its name implies, the
possibility of implementing at the local level very complex
mechanisms, which would be extremely hard to include in
an analytical treatment (e.g. in a partial differential equation).
In fact, the method allows one full freedom in the choice
of interactions between the nodes, which represent the
material cells. It is possible, by splitting the nodes at
the interfaces between contiguous material components, to
include mesoscopic features and microdamages [21]. The
reliability of the LISA formalism has been verified by means of
many comparisons with both analytical [19] and experimental
results [22].

In the LISA approach, the specimen is discretized in
a two-dimensional [21] or three-dimensional grid [23]. As
already mentioned, each grid point is split into subnodes (4 in
two-dimensional and 8 in three-dimensional, respectively).
Subnodes belonging to nearest neighbour nodes are connected
by properly defined tensorial springs. Also, internal forces are
defined to keep together the four subnodes belonging to the
same node. Different interactions may be introduced between
the subnodes (starting e.g. from continuity relations), thus
simulating perfect or faulty contact or bonding [21] and/or
nonclassical nonlinear effects [24]. The elastic properties
of the resulting system of springs (and forces) provide the
ability to describe the propagation of a disturbance along the
specimen.

2.2. The procedure

The procedure adopted is straightforward. One transducer and
several receivers (used as transmitters in the TR propagation)
are located at selected nodes of the discretized specimen.
Unless otherwise specified, we assume that the transducers
dimensions are small compared to the wavelength, so that
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they may be modelled as point sources. A signal is injected
in the form of a forced displacement of the corresponding
node, being uforw(t) the temporal signal. The signal urecv

j (t)

(j = 1, . . . , N) is then received by the N receivers. A time
window (t0 < t < t1) of the signal is amplified, time-reversed,
and rebroadcasted back from all receivers simultaneously. The
time is reset to 0 at the end of the injection of the TR signal,
which, therefore, is given by:

utr
j (t − t1) = Aurecv

j (t1 + t0 − t) t0 < t < t1 (1)

where A is a constant amplification factor for all the receivers.
Albeit we are dealing with linear problems, the

amplification is a relevant process for the interpretation of
results. Indeed, since in the forward propagation the energy of
the signal injected from the transducer is spread geometrically
over the whole specimen, urecv

j (t) is generally a low amplitude
signal (eventually even smaller due to attenuation). Therefore,
amplification has to be introduced in order to obtain significant
focusing.

In order to have the same energy in the injection and in
the TR iterations, the amplification factor has to be calculated
keeping into account the number of receivers and the width
of the time window. For the present purposes, we define A,
so that the maximum injected displacement is the same in the
forward and TR process:

max
j,t

(
utr

j (t)
) = max

t
(uforw(t)) (2)

As a consequence, the focused signal may have a larger
amplitude than the injected one (particularly when a large
number of receivers is used).

3. Results and discussion

In order to demonstrate the applicability of LISA to the
simulation of TRA and TRE experiments, a large number of
simulations were performed. We report in the following the
results of a few of them.

3.1. Waveguide simulations, TRA

Starting with virtual experiments with waveguides similar to
the ones performed by Fink and co-workers [8], we first show
(figure 1) the basic set-up with one source on the left-hand side
and an array of 13 equally spaced receivers on the right-hand
side. For the simulation, we used a discretization lattice of
1500 × 50 space steps (ε = 1 mm), with a time discretization
step τ = 0.45 µs and frequency ω = 0.4 MHz. (Note that
receivers and transducers are not located on the boundaries of
the specimen. The specimen extends for an additional 380 mm
on each side to avoid reflections from the boundaries).

Figure 2 shows a snapshot of the displacement amplitude
after time-reversal of the input signal from all 13 receivers,
including up to 6 ‘echoes’ from the waveguide walls. (The
nth echo is the component of the signal as received after n

reflections from the waveguide walls.) In the figure, lighter
tones denote larger amplitudes. (To avoid visual effects due to
the choice of the amplification factor, here and in the following,
the grey scales are normalized to the maximum value in the

time sequence.) Good focusing can be observed on the source
location with minimal energy dispersion elsewhere.

A greyscale (or colour) map of amplitudes, such as shown
in figure 2, may be very useful for illustrating the overall
features of the results. However, time series plots, as shown in
figure 3, allow one to perform a more detailed analysis. The
first plot in figure 3 displays the injected signal, a Gaussian
modulated sine wave, typical of the type of actual signals
injected from a piezoelectric source into a solid. The other
three plots show the x-component of the displacement (in
arbitrary units) vs time in the three cases of:

(i) a signal as received after time-reversal from the 13
receivers, including 6 echoes (as in figure 2);

source

AIR

WATER

STEEL

740 mm

40mm
receivers

Figure 1. Set-up for the TRA virtual experiment.

Source location Receivers loc.

Figure 2. Result of a TRA experiment using the set-up of figure 1.
The grey scales are normalized to the maximum value in the
considered time sequence; aspect ratio 1 : 10.
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Figure 3. x-component (u) of the displacement vs time as recorded
at the source location: (a) imput signal; (b) signal obtained by TRA
from the 13 receivers including 6 echoes; (c) TRA from one
receiver; (d) TRA from 13 receivers but using only 3 echoes. Note
the different u scale in the various plots. The different amplitudes
are due to a non normalized injected energy.
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(ii) a signal as received after time-reversal from only one
receiver (the central one);

(iii) a signal as received after time-reversal from the 13
receivers but with only 3 echoes.

It is clear from the three plots that the best focusing
is obtained in the first case, as expected from previous
work [7]. Case (ii) has a large level of ‘noise’: in fact it
would be unrealistic to expect that time-reversal could be
effectively carried out with a single receiver. The last plot
(d), corresponding to case (iii) is much better than (c) but
less focused than (b), since fewer echoes were retained, thus
demonstrating the improvement power of multiple reflections,
as discussed in the introduction. Note that the amplitudes
of the time-reversed signals (figures 3(b)–(d)) depend on
the amplification procedure adopted (see previous section).
As expected from equation (1), the detected, time-reversed
amplitude is larger than that of the input signal when a large
number of receivers is used (figures 3(b) and (d)), and is smaller
in the case of a shorter time window (figure 3(d)). When
a single transducer is used (figure 3(c)) the signal is slightly
smaller than the input signal in our procedure.

We next present some results of virtual TRA experiments
with a pure Gaussian pulse. In figure 4, we show three
successive snapshots of the displacement amplitude of the
time-reversed, backward-travelling wavefield. In this case,
we have considered time-reversal from all the 13 receivers
and up to 9 echoes. The bottom plot again shows good
focusing on the source. Figure 5 displays the component of the

source receivers

t = 900

t = 100

t = 400

Figure 4. Snapshots of the displacement amplitude of the TR
backward travelling pulse. Normalization as in figure 2.
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Figure 5. Injected pulse (——) and TRA signals (a,b,c) for 3, 5 and
9 echoes, respectively (- - - -).

injected pulse on the left-hand side, as recorded by the central
receiver, and, on the right-hand side, the signal received by
the central receiver. Note the low amplitude of the received
signal (reported on the right axes) and the time windows t0 − t1
(schematically represented by the arrows a, b, c) in the cases of
3, 5 and 9 echoes, respectively, used in the reversal. Figure 6(a)
shows the injected signal, (b) the ‘full’ time-reversed signal
(13 receivers, 9 echoes), (c) the time-reversed signal from 1
receiver and 9 echoes and (d) the time-reversed signal from
the 13 receivers with only 3 echoes. Again, the best result
is the one obtained using the most sidewall echoes shown in
figure 6(b) (same considerations on amplitudes as for figure 3).

3.2. TRE simulations

Turning our attention now to virtual TRE experiments, we
consider a set-up similar to the one shown in figure 1,
but with a high density solid (e.g. steel) in the waveguide
and air in the bottom and top layers. The time step τ is
chosen, as usual, to insure stability of the numerical procedure
(τ = 0.15 µs). Consequently, it is smaller than in the case
of water (figures 1–6), due to the higher sound velocity.
Figure 7 shows snapshots at various times of the displacement
amplitudes (using a Gaussian-shaped sinusoid). In the first
three cases (left column) we observe the forward propagation,
with the formation of Lamb-like wave patterns. In the next
three plots (right column), the TR backscattered wavefield is
reported, displaying good focusing on the source location in
the bottom plot.

Next (figure 8), we simulate a large square solid plate
(Al) with an extended source on the left-hand side and
11 equally spaced receivers on the right-hand side. The
discretization lattice includes 400 × 400 nodes with space
step ε = 1 mm and a time step τ = 0.42 µs. The injected
signal is a forward travelling Gaussian modulated sine wave
with frequency ω = 0.5 MHz. As in figure 7, we show
six (amplitude normalized) snapshots, the first three (left
column) showing forward propagation, the last three (right
column) the TR backwards travelling wavefield. Time for the
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Figure 6. Time signal for the experiment of figure 4: (a) the injected
pulse; (b) TRA from 13 receivers and with 9 echoes; (c) TRA from
one receiver and 9 echoes; (d) TRA from 13 receivers and 3 echoes.
Note the different u scale in the various plots. The different
amplitudes are due to a non normalized injected energy.

3148



LISA simulations of TRA and TRE wave experiments
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Figure 7. Forwards and time-reversed propagation of a Gaussian
modulated sine wave in a steel waveguide. Normalization as in
figure 2; aspect ratio 1 : 10.

waveforms in the right column begins from the start of the TRE
procedure. In the forward propagation phase we observe the
partial mode conversion to shear waves (the lateral ‘wings’)
and reconversion to P-wave (second wavefront). The partial
reflection (visible in the bottom plot) is irrelevant, since only
first arrival times and amplitudes are recorded by the receivers
and the broadcasting of the time-reversed signal takes place
much later. In the time-reversed wavefield, it is interesting
to observe the various ‘rays’ for the individual receivers and
their convergence on the source location. Figure 9 displays the

t = 100

t = 300

t =500

forward reversed

Figure 8. Forwards and backwards propagation of a Gaussian
modulated sine wave in an Al plate. Normalization as in figure 2;
aspect ratio 1 : 1.
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Figure 9. Injected (——) and TRE (- - - -) signals (same as in
figure 8). Both signals are normalized to one.

x-component of the displacement of both the injected and the
TRE pulses. The absolute magnitude is not relevant here since
both signals are normalized to unity. What is remarkable is the
minimal amount of ‘noise’ in the TRE signal.

In order to better understand the effect of mode conversion
in TRE, as discussed in section 2, we analyse four various
possibilities in figure 10 (all signals have been scaled so that
the x-component of the received signal is normalized to 1).
The u and v components of the displacement are shown in two
columns. In the upper row, the input Gaussian modulated sine
wave is displayed for reference. Since it is injected as a forward
travelling P-wave, it has only an x-component u (figure 10(a));
the y-component of the displacement (figure 10(b)) v = 0. In
the second row, we display the TRE wavefield, as recorded
at the source location, when the complete signal (i.e. both the
longitudinal P and shear S) is recorded by all receivers and
time-reversed (figures 10(c), (d)). In the third row the full
signal is recorded, but only the x-component is time-reversed
and retransmitted. Finally, in the bottom row, only the arrival
of the P-wave is recorded, but both the x- and y-components
of the displacement are rebroadcast after the time-reversal
(figures 10(g) and ( h)). Of these procedures, the one in the
second case (figures 10(e) and ( f )) yields the worst results.
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Figure 10. u and v components in the case of figure 8. First row (a), (b): the injected signal. Second row (c), (d): signal at the source
location after recording and TR of the complete signal at the receivers. Third row (e), ( f ): after recording the full signal, but TR of only the
u component. Fourth row (g), (h): after recording of only the p-pulse, but TR of the full p signal. Signals are normalized to one.

It is arguable which is better between the first and the third
one. In fact, the first one better reproduces u, but has a larger
v-component (which does not exist in the input signal). This
might not be, however, too relevant, since mode conversion
starts right at the onset of the injection and the v-component is
very small in both cases.

Next we wish to demonstrate the capability of TRE to
focus energy on a scatterer in a solid. For this purpose, we
consider a plate discretized as a lattice of 400 × 400 grid
elements with space step ε = 3 mm. The plate has a void
inclusion of 20 × 20 steps (best viewed as a black rectangle in
the bottom plot of figure 13). We inject a compressional wave
from a transducer of small but finite width with a Gaussian
profile of width 42 µs. In figure 11 we observe the propagating
pulse, right after injection in the upper plot; with a well formed
P-wave front and a trailing S-mode (including also mode-
reconverted P, see arrow, just as in figure 8) in the middle
plot; and just reaching and illuminating the inclusion in the
bottom plot.

When the pulse reaches the inclusion, it is partially
reflected back to the source and time-reversed by an array
of 11 equally spaced receivers, located on the left-hand

side (pulse-echo mode). The retransmitted wavefield is
enhanced to compensate for the losses (mostly the energy
transmitted beyond the inclusion). The ‘rays’ from the
11 receivers/transmitters can be well observed in the upper
plot of figure 12. The bottom plot shows good focusing of the
resulting wavefield on the target (greyscale normalized to the
maximum amplitude). The process is then repeated one more
time (figure 13) and a still better focalization can be observed
on the bottom plot, thus demonstrating the focusing power of
TRE iterations.

4. Conclusions

TRA and TRE waves represent a new research tool that has
generated considerable excitement, both as an area of basic
science and for its wealth of potential applications in several
fields (many of which already successfully implemented).
Not yet explored, but very promising, are applications to
the Earth sciences. In all cases, virtual experiments, such
as LISA simulations, may be very useful, if not to replace
actual experiments, at least to help in performing them more
efficiently and at a lower cost. To our knowledge this is the
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Figure 11. Propagation of a Gaussian pulse in an epoxy plate. The
three plots represent three successive snapshots of the wavefield.
Normalization as in figure 2; aspect ratio 1 : 3.

Figure 12. Wavefield due to the pulse of figure 11 after one TRE
application. Normalization as in figure 2; aspect ratio 1 : 3.

first application of a simulation approach to elastic waves and
opens up the possibility to apply our approach to more complex
cases, such as anisotropic or stochastic media.

In the present contribution, we demonstrate the
applicability of LISA to simulate both TRA and TRE
experiments, by means of several examples. In particular, we
illustrate the focusing power of both techniques, the advantage
of multiple reflections (e.g. from the walls of a waveguide) and
of multiple iterations. We also offer a preliminary comparative
analysis of various different ways to include mode converted

Figure 13. Wavefield due to the pulse of figure 11 after two TRE
applications. Normalization as in figure 2; aspect ratio 1 : 3.

pulses in the implementation of TRE. Finally, we demonstrate
TRE’s capability of focusing energy on a given target.
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